
INTERNATIONAL. JOURNAL. FOR NUMERICAL METHODS IN FLUIDS, VOL. 2 1, 14 1-1 53 (1 995) 

DAMPED ARTIFICIAL COMPRESSIBILITY ITERATION SCHEME 
FOR IMPLICIT CALCULATIONS OF 

UNSTEADY INCOMPRESSIBLE FLOW 

P. R. MCHUGH AND J. D. RAMSHAW 
Idaho National Engineering Labomtoy, I! 0. Box 1625, Idaho Falls, ID 83415-3808, US.A 

SUMMARY 

Peyret (1 Fluid Mech., 7 8 , 4 9 4 3  (1976)) and others have described artificial compressibility iteration schemes for 
solving implicit time discretizations of the unsteady incompressible Navier-Stokes equations. Such schemes solve 
the implicit equations by introducing derivatives with respect to a pseudo-time variable z and marching out to a 
steady state in 2. The pseudo-time evolution equation for the pressurep takes the form ap/a7 = -a*V.u, where a 
is an artificial compressibility parameter and u is the fluid velocity vector. We present a new scheme of this type in 
which convergence is accelerated by a new procedure for setting a and by introducing an artificial bulk viscosity b 
into the momentum equation. This scheme is used to solve the non-linear equations resulting from a fully implicit 
time differencing scheme for unsteady incompressible flow. We find that the best values of a and b are generally 
quite different from those in the analogous scheme for steady flow (J. D. Ramshaw and V A. Mousseau, Comput. 
Fluids, 18, 361-367 (1990)), owing to the previously unrecognized fact that the character of the system is 
profoundly altered by the presence of the physical time derivative terms. In particular, a Fourier dispersion analysis 
shows that a no longer has the significance of a wave speed for finite values of the physical time step At. Indeed, if 
one sets a N 1u1 as usual, the artificial sound waves cease to exist when At is small and this adversely affects the 
iteration convergence rate. Approximate analytical expressions for a and b are proposed and the benefits of their 
use relative to the conventional values a N (u[ and b = 0 are illustrated in simple test calculations. 
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1. INTRODUCTION 

The artificial compressibility (AC) is widely used for solving the steady state 
incompressible Navier-Stokes equations. In this method the steady solution is computed as the 
asymptotic limit of an artificial transient process in a pseudo-time variable T. Compressibility is 
artificially introduced by setting 

where p is the pressure (divided by density), u is the fluid velocity vector and a is an artificial sound 
speed. One ordinarily sets a - lul so that convective and acoustic effects occur on similar time scales. 
Equation (1) and the momentum equation are simultaneously marched out in T until a steady solution 
is obtained. The incompressibility condition V - u = 0 is artificially violated during the artificial 
transient but is satisfied in steady state when dp/& = 0. The continuing popularity of the AC method 
is due in large part to its simplicity and clear physical interpretation. 
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The equations resulting from implicit time discretizations of the unsteady incompressible Navier- 
Stokes equations are similar in structure to the steady state equations. The incompressibility condition 
is unchanged and the fully implicit unsteady momentum equation is obtained simply by adding a 
backward time derivative of velocity to the corresponding steady equation. These implicit equations 
should therefore be amenable to solution by time-like AC iteration schemes similar to the steady state 
AC method. Schemes of this type have indeed been described and applied by P e ~ r e t ~ . ~  and others.&'' 

It has recently been shown that convergence of the steady state AC method can be significantly 
accelerated by introducing an artificial bulk viscosity b to remove the artificial sound waves more 
rapidly.'' The original purpose of the present work was to investigate whether AC iteration schemes for 
implicit unsteady calculations can be accelerated in a similar way. In doing so, however, we 
encountered some unexpected and counter-intuitive behaviour. In particular, we observed that for small 
values of the physical time step At, convergence could be greatly accelerated by letting a be much 
larger than conventional values of order 1111, in spite of the fact that this required a corresponding 
reduction in the pseudo-time step AT. Moreover, when this was done, we obtained no benefits from b. 
For sufficiently large At, however, conventional values of a again worked best and the use of b again 
produced benefits similar to those previously obtained in the steady state case." 

These observations led us to examine the character of the pseudo-time evolution equations using 
Fourier dispersion analysis. This analysis showed that the physical time derivative term in the 
momentum equation introduces additional damping which can profoundly alter the character and 
behaviow of the system. This damping is proportional to llAt, so it becomes very large for small At. 
There is then no need to supply any additional damping, which explains why b was not found to be 
beneficial in this regime. The analysis fhther shows that the parameter a no longer has the 
interpretation of a wave speed for finite At. Indeed, for small enough At and conventional values of 
a - 1111 the system becomes overdamped and the artificial sound waves cease to exist! The system then 
loses its hyperbolic behaviour and becomes purely parabolic or diffusional. However, the waves are 
restored by using the larger values of a that were observed to result in accelerated convergence. Thus it 
appears that the artificial sound waves play an essential role in obtaining rapid convergence. This is in 
accordance with the growing evidence that combinations of hyperbolic and parabolic behaviour often 
produce faster convergence than either one alone."-'3 The beneficial effects of the artificial sound 
waves are also confirmed by a Fourier convergence rate analysis'"'6 of the simplified equations with 
convection terms omitted. 

Guided by these insights, we proceeded to postulate that the actual artificial sound speed c rather 
than the parameter a should be set to a value of order 1111 and that the total rate at which long 
wavelengths are damped by both At and b should be similar to that at which they are damped by b 
alone in steady state calculations (At + 00). We thereby obtained simple approximate analytical 
expressions for a and b containing corresponding dimensionless coefficients a and of order unity. 
These expressions provide reasonable first estimates of a and b which usually produce iteration counts 
within about 25% of the best values found empirically by numerical experiments. 

The paper is organized as follows. In Section 2 we define the fully implicit time differencing scheme 
that we use to generate approximate numerical solutions to the unsteady incompressible Navier-Stokes 
equations. This scheme produces a system of coupled non-linear algebraic equations for the pressure 
and fluid velocity at the advanced time level. We then present the damped artificial compressibility 
iteration scheme that we use to solve this system, together with the associated stability restrictions on 
the pseudo-time step AT. In Section 3 we analyse the behaviour of the iteration scheme by means of a 
long-wavelength Fourier dspersion analysis. This analysis yields information about wave speed, 
damping and convergence rate. Based on these results, we propose expressions for the parameters a 
and b as discussed above. In Section 4 we apply the scheme to the solution of two test problems, a 
driven cavity and flow past a rectangular obstacle, for several different spatial discretizations and 
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values of At. The resulting iteration counts are compared with those resulting from the conventional 
values a - lul andor b = 0. Finally, a few concluding remarks are given in Section 5 .  

2. TIME DIFFERENCING AND ITERATION SCHEME 

Our overall objective is to develop a suitable scheme for obtaining approximate numerical solutions of 
the unsteady incompressible Navier-Stokes equations 

v . u = o  (2) 

du 
-+ at  u * v u  = -vp + vv*u, 

where v is the kinematic viscosity. The numerical solution will be obtained at a sequence of discrete 
times P ( n  = 0, 1, 2, . . .) separated by time increments or time steps At = P+' - t". As usual, time 
levels will be displayed as superscripts, so that Q" denotes the approximation to the quantity Q at time 
t = t". We shall adopt a fully implicit temporal differencing scheme in which time derivatives are 
approximated by backward differences and all other quantities are evaluated at the advanced time level. 
We thereby obtain 

(4) v . U"+l - - 0, 

Partially implicit schemes, such as Cranl-Nicolson, and linearly implicit schemes, in which the 
convective terms are linearized in u"+', are also commonly employed. We prefer the fully implicit 
scheme for several reasons: (i) The fully implicit scheme provides the option of calculating steady state 
solutions in a single time step simply by setting At to a very large value. (ii) Crank-Nicolson 
differencing of the viscous terms, while second-order-accurate and unconditionally stable, is known to 
produce irregular solutions for very large At,I7 whereas the fully implicit scheme produces 
qualitatively reasonable solutions for any At, however large. (iii) A Crank-Nicolson treatment of the 
pressure gradient term alone has no significant effect: it yields the same velocity field as the simpler 
hlly implicit treatment. To see this, consider the effect of replacingp"+' by a scalar potential 4 in (5). 
Equations (4) and (5) then determine a unique solution for u"+l and 4 regardless of whether we 
subsequently interpret 4 as p"+' or @" +p"+')/2. Thus the Crank-Nicolson value of @" +p"+')/2 is 
identical with the fully implicit value ofp"+l, so the only difference between the two treatments is a 
slight difference in the time dependence of the pressure field. 

The spatial derivatives in (4) and (5) are of course also approximated by a suitable spatial 
discretization scheme and this will be understood in what follows. The present method should be 
compatible with any reasonably well-behaved spatial discretization scheme, including finite element 
and spectral schemes as well as finite differences. (The detailed convergence behaviour, however, may 
well depend to some degree on the particular spatial scheme that is used.) In the present study, spatial 
derivatives were approximated by simple low-order finite difference approximations on a uniform two- 
&mensional rectangular mesh with spatial increments Ax and Ay. We used a conventional staggered 
scheme based on the MAC placement of variables7 in which pressures are located at cell centres while 
normal velocity components are located on cell faces. Centred spatial differencing was used for all 
terms except convection, which was represented by upwind or donor cell differencing for simplicity. 

Equations (4) and (5) constitute a system of non-linear algebraic equations for the quantities u"+' 
and p"+' at each mesh point. This system must be solved in order to advance the solution from one 
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time level to the next. This is done by means of a time-like iteration scheme which may be written in 
differential form as 

au u - u n  
(U * VU) - V(p - bV . U) + vV2u, - 

8 T  At (7) 

where T is an artificial pseudo-time variable and b > 0 is an artificial bulk viscosity. These equations 
are to be marched out to a steady state in pseudo-time. The derivatives d / d ~  then vanish and 
comparison with (4) and ( 5 )  shows that p and u then converge to the advanced time values pn+' and 

The essential new feature of the present scheme is the artificial bulk viscosity term in (7). 
Previous schemes of this type&'' are essentially all based on various numerical implementations of (6) 
and (7) with b = 0. 

Equations (6) and (7) are solved numerically by discretizing T and approximating the pseudo-time 
derivatives as finite differences over pseudo-time increments AT. The pseudo-time level i is equivalent 
to an iteration index and will be displayed as a superscript in parentheses. We use a simple fully 
explicit pseudo-time differencing scheme which is well suited to vector and parallel processing. This 
scheme is given by 

One might at first think that it would be advantageous to evaluate u in the At term as di+l) rather than 
~ ( ' 1 ,  since this would still allow an explicit solution for u('+l). However, this would be an illusory 
modification, since it is algebraically equivalent to simply redefining the parameters AT and a. 

Equations (8) and (9) define the iteration scheme used to solve the non-linear algebraic system of 
equations (4) and (5 ) .  The fiee parameters a and b are at our disposal. They should of course be set to 
values that maximize the rate of convergence, as discussed in Section 3 below. 

The pseudo-time increment AT is restricted by the applicable explicit stability limit, which may be 
approximately determined by a linearized Fourier or von Neumann analysis in the usual way.7 The 
detailed form of this stability restriction depends on the details of the spatial differencing and this may 
in turn affect the convergence rate to some degree. However, we would expect this effect to be 
relatively minor, since different spatial schemes tend to have similar stability limits for the same time 
differencing. Different spatial schemes will also differ in their artificial or numerical viscosities and 
this may have some effect on the optimal value of the artificial bulk viscosity b. In particular, the use of 
convective schemes with smaller artificial viscosities may well shift the optimal b to somewhat larger 
values than those found in the present study. Thus the use of alternative spatial difference schemes may 
have some effect on the optimal values of a and b, but this effect seems unlikely to be dramatic. 

We now proceed to determine a suitable approximation to the stability restriction on AT for the 
present scheme. For simplicity we shall consider the stability of the convective terms separately from 
that of the remaining terms. The overall stability condition will then be approximated by the more 
restrictive of the resulting separate stability conditions. The convective stability limit for upwind 
differencing in a rectangular mesh is well known and is given by AT <  AT^, where 
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Here u and o are the x-  and y-components of u respectively and the minimum is taken over all cells in 
the computing mesh. 

We now consider the stability of the scheme with the convection terms omitted. For this purpose it is 
convenient to consider the velocity divergence V - u and the vorticity V x u separately, since the 
former is directly coupled to the pressure whereas the latter is not. The divergence of (9) may be 
combined with (8) to obtain an equation forp or V * u alone. A Fourier analysis of the result yields the 
stability condition AT < ATd, where ATd is determined by 

a2Ari 2 ( b + v ) A ~ d  ATd +-= 1 ,  
A2 2At + 

A2 

with A2 = ( l / G  + l/Afl)-'.  Solving for Azd, we obtain 

where A = a2/A2 and B = 2(b + v)/A2 + 1/2At. 
The vorticity equation is obtained by taking the curl of (9). The pressure term then drops out, so the 

resulting equation involves the vorticity alone. A Fourier analysis of this equation yields a stability 
condition which is always less restrictive than the previous one and may therefore be ignored. 

The overall stability condition is now approximated by AT < min(A.r,, AQ) or, equivalently, 

AT = f  min(Az,, ATd), (13) 

where f is a safety factor between zero and unity. 
The scheme of equations (8) and (9) must be initialized by specifying values forp(O) and u(O), which 

should of course represent one's best estimate of the final converged solution. There are at least three 
obvious initializations that might be considered, namely 

(a) (P, u)(O) = (P, u)" (previous time level) 
(b) (P, u)(O) = 2 ( ~ ,  u)" - (P, u)'-l (extrapolation) 
(c) explicit predictor 

where (c) is obtained by setting AT = At on the first iteration of (a). Which of these initializations is 
best will be problem-dependent and will depend upon At as well as on whether the flow is evolving 
rapidly or slowly. In the present study we have restricted attention to initialization (a) and have not 
systematically explored the use of (b) or (c). 

The solution is then marched out in pseudo-time or i until it converges to a steady state as i + 00. 

Of course, the solution is converged for all practical purposes at some finite (and hopefully small) 
value of i, at which point the iteration may be terminated. This point is determined by an appropriate 
convergence criterion. We consider the iteration to be converged when both the following conditions 
are satisfied: 

where w = V x u is the vorticity, U is the maximum value of J(u' + 02) anywhere in the computing 
mesh or on the boundaries, Ld = J ( L i  + L i ) ,  L, and L,, are characteristic lengths in the x- and y- 
directions respectively and &d and E, are dimensionless tolerances. We currently set &d = lop5 and 
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tv = 
in test calculations. 

which are small enough that the solution is not sensibly changed by reducing them further 

3. FOURIER DISPERSION AND CONVERGENCE ANALYSIS 

We now proceed to analyse the behaviour of the iteration scheme at long wavelengths by means of a 
linearized Fourier dispersion analysis. For long wavelengths the differential equations (6) and (7) are 
very accurate approximations to the discrete equations (8) and (9). We may therefore simply perform a 
dzflerential Fourier dispersion analysis of (6) and (7), which significantly simplifies the algebra. The 
purpose of the analysis is to obtain insight into the wave propagation and damping characteristics of 
the scheme in the simplest possible setting. To this end we remove inessential complications by 
adopting two further simplifications: (i) The convection terms will be neglected. The equations then 
become linear and no further linearization is needed. (ii) We specialize to the case of one-dimensional 
flow in the x-direction. 

We seek solutions in which the dependent variables are Fourier modes of the form 
p = p  exp[i(kr - w t ) ]  and u = ii exp[i(kr - w t ) ] ,  where k is the wave number and w is the angular 
frequency. The wavelength corresponding to k is L = 2n/k ,  which must be much larger than Ax for the 
continuous analysis to apply. The longest meaningful wavelength in a computational region of length L 
is L = 2L, which corresponds to a wave number k = kL = n/L. Substituting these Fourier modes into 
(6) and (7), we find that non-trivial solutions exist only when w and k are related by the dispersion 
relation 

0 
- = -iao f J(a2 - a;), 
k 

where a0 is a critical value of a given by 

1 1  
2 kAt 

a. = - (- + (b  + v ) k ) .  

The imaginary part of w determines the rate of growth or decay of the Fourier mode, while the real part 
of w / k  determines the wave speed c. The wave speed therefore vanishes for a < a0 and is given by 

c = J(a2 - a;) (18) 

for a > ao. Thus c is always less than a, becoming smaller for larger ao. Since a0 depends on k, so does 
c and the system is dispersive. 

The present analysis is restricted to long wavelengths (i.e. small k), for which the viscous terms in 
(1 7) are small. The magnitude of a0 is therefore primarily governed by the At term in (1 7). When At is 
large, a0 is small and c x a, which is of course the usual interpretation of a. For smaller At, however, 
a0 becomes larger and this interpretation is no longer valid. Indeed, for given values of a and k there is 
a critical value of At below which a0 exceeds a and the artificial sound waves cease to exist. This 
intuitively seems undesirable, since there is growing evidence that combinations of wave-like and 
diffusional behaviour exhibit better convergence properties than either one In order to 
preserve the artificial sound waves for a given k, it is necessary to increase a as At is reduced so that a 
remains greater than ao. This requires larger values of a for smaller k, since the dominant term in a0 is 
inversely proportional to k. Thus a0 is largest and c is smallest when k is smallest, i.e. for 
k = kL = n/L. The resulting maximum a0 is given by 
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Values of a larger than U L  therefore preserve the artificial sound waves for all wavelengths. However, 
these larger values of a require smaller values of AT for stability and one might intuitively suspect that 
this would reduce the convergence rate, thereby negating any benefits the waves might otherwise 
provide. Perhaps surprisingly, however, this does not occur. Both numerical experiments and a heuristic 
Fourier convergence rate analysis (see below) show that the fastest convergence is in fact obtained by 
setting a > U L ,  in spite of the resulting reduction in AT. 

The heuristic convergence rate ana l~s i s '~ - '~  is based on the fact that the overall rate of convergence 
is typically limited by the Fourier modes with k = k L ,  for which 

The amplitude of these modes decays by a factor exp[AzIm(w)] on each iteration. The convergence 
rate R is defined by equating this factor to exp(-R) so that 

R = -Adm(m). (21) 
Since there are two roots for w according to (20), there are two corresponding values for R and the 
overall convergence rate is the smaller of these two values.I6 Combining (20) and (21) with this in 
mind, we obtain 

where use has been made of the fact that As = fAZd in the absence of convection. The factor Azd of 
course depends on a and b via (12). We now wish to find the values of a and b which produce the 
largest R. First we shall maximize R with respect to a at fixed b. To this end we consider aR/aa, which 
may be shown to be positive for a < UL and negative for a > UL. The maximum R is therefore attained 
for a = U L ,  which is just the critical value which a must exceed for waves to exist! Setting a = U L ,  we 
then have R = faLAzd, which still depends on b through U L  and ATd. The next step is to maximize this 
expression with respect to b. We find that 8Rl6'b < 0, so the maximum R is obtained by using the 
smallest allowed value of b, namely b = 0. Thus the optimal parameter values in the case of no 
convection are a = U L  and b = 0. Even when convection is present, we may anticipate that these values 
will be nearly optimal for very small At. In this case UL becomes very large, so that IuI << a. 
Convection is then a much slower process than wave propagation and its effect on the convergence rate 
should correspondingly be small. 

When a > ao, we find from (16) and (17) that 

1 1  
-rm(w) = - 2 (- At + (b + v)ki), 

which is a characteristic damping rate in pseudo-time. This rate is seen to be the sum of a term 
proportional to V A t  and a term proportional to k2. The k2 term represents viscous damping, which is 
large for short wavelengths but small for long ones, while the llAt term damps all wavelengths at a 
uniform rate that becomes large for small At. This latter damping is due to the physical time derivative 
term in (7). If the other terms were absent, this term would simply produce an exponential relaxation of 
u to u" with a pseudo-time constant of At. Owing to its wavelength independence, this type of damping 
is actually preferable to viscous damping. When this term is significant, the additional damping 
provided by b is evidently not needed and indeed becomes undesirable, since it requires an 
unnecessary reduction in AT. As discussed above, when At is small, we would expect a similar 
situation even with convection present. 

Guided by these insights, we shall rely on heuristic arguments to propose values for a and b suitable 
for general use when convection is present and At is arbitrary. All indications are that artificial sound 
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waves are desirable and should be preserved, which we shall ensure by requiring that a > aL. We 
further postulate that the speed of these artificial waves at long wavelengths should be of order lul so 
that convective and acoustic effects occur on similar time scales, just as in the original AC method.’ 
According to (18), the wave speed at long wavelengths is given by CL = , / (a2 - at). There is some 
ambiguity in setting CL N 1111, not merely in the choice of a proportionality constant but also because u 
generally depends on space and time. In some situations, particularly in non-uniform meshes with large 
spatial variations in A, it may be advantageous to also allow CL to vary in both space and time. In the 
present study, however, we simply set CL N U so that a2 - at + U2 or 

a2 = .’(a: + u2), (24) 
where a is a dimensionless coefficient of order unity. In the case of no convection, where u = 0, this 
properly reduces to a N U L .  

We now consider how to set b. According to (23), the damping rate for k = kL at finite At may be 
regarded as resulting from a net effective viscosity v, = b + v + l / k iA t .  This suggests that the 
convergence rate is likely to depend more simply on v, than on b itself, which leads us to hypothesize 
that in contrast with b, the best value of v, may be relatively independent of At. If so, the best value of 
ve will be close to that of b + v in steady state calculations (At  + oo), which is known to be of order 
UA.” We are therefore led to postulate that v, should be proportional to U A ,  subject of course to the 
restriction that b > 0. We thereby obtain 

0,  p U A - v - -  (25) 

where p is a dimensionless coefficient of order unity. 
The above considerations are still restricted to the case of one spatial dimension. In the two- 

dimensional case we evaluate k~ in (19) and (25) as , / ( k i  + k;) ,  where kx = n/Lx and k y  = n/L,,. 
The damping rate at long wavelengths is also influenced to some degree by the artificial viscosity of 

the numerical scheme, which has been neglected in the present development. It might be possible to 
obtain a more accurate expression for b by taking this effect into account, especially in schemes with 
large artificial viscosities, but we have not explored this possibility. 

The overall procedure for setting the parameters is therefore as follows. One first determines b using 
(25). The result combines with (19) to determine a ~ ,  which then combines with (24) to determine a. 
These values of a and b combine with (12) to determine Azd, and then AT is determined by (1 3). Since 
a and b depend upon U, which changes during the iteration, we recompute the values of a and b every 
25 iterations as well as at the beginning of each time step. 

4. TEST CALCULATIONS 

The method embodied in equations (8) and (9) has been used to solve two different unsteady two- 
dimensional test problems, a conventional driven cavity and flow past a rectangular obstacle. Both 
problems were solved as true unsteady calculations, starting from initial conditions far away from the 
final steady state solution. The driven cavity problem was solved using two different spatial 
discretizations and both problems were solved for a wide range of At, varying from small values of the 
order of A / U  to very large (essentially infinite) values. The total number of iterations, summed over all 
time steps in each calculation, is used as an overall measure of computational efficiency. These total 
iteration counts therefore represent averages over the transient history of the flow field as it evolves 
from highly unsteady initial conditions towards a steady state. For each grid and At, approximate 
optimal values of a and p were empirically determined by searching in increments of Aa = 0.25 and 
A j  = 0.1 for the values that minimized the iteration counts and the resulting ‘best’ iteration counts 
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were recorded. Compromise At-independent values of a and fl were also determined and the 
corresponding 'compromise' iteration counts were usually found to be within 25% of the best iteration 
counts. In order to assess the benefits of our new expressions fora and b, comparison calculations were 
also performed using the conventional values a = aU and b = 0 (using the compromise value for a) 
and the resulting 'conventional' iteration counts were compared with the compromise iteration counts. 
Speed-up factors are defined as the ratios of conventional to compromise iteration counts. These 
speed-up factors are conservative; they would of course be larger if they were defined relative to the 
best rather than the compromise iteration counts. The time step safety factorffor each calculation was 
simply set to the largest multiple of 0.05 for which convergence occurred. 

The driven cavity problem is a simulation of flow in a unit square, the lid or top boundary of which 
slides parallel to itself at unit velocity. The Reynolds number based on lid velocity and side length is 
Re = 400. The fluid is initially quiescent and the motion is started impulsively at t = 0. Unsteady 
calculations are run out to a time t = 25, where the solution has become nearly steady, while true 
steady solutions are computed by setting At to a very large value. Calculations were performed for 
various values of At using two different spatial meshes, a coarse 10 x 10 mesh (Ax = Ay = 0-  1) and a 
finer 40 x 40 mesh (Ax = Ay = 0.025). The steady state velocity vectors for the 40 x 40 case are 
shown in Figure 1. Iteration counts and speed-up factors are given in Table I for the 10 x 10 case and 
in Table I1 for the 40 x 40 case. The tables also show the best and compromise values of a and f l  and 
the corresponding compromise and conventional values of a and b at iteration convergence. 

Inspection of the tables shows several clear trends and leads to some definite conclusions. In the 
10 x 10 case summarized in Table I we see clear differences in behaviour between small and large 
values of At. For At b 1 our new values of a are essentially the same as the conventional ones, and the 
modest speed-up factors that we obtain are due to the additional damping provided by b. For 
At 5 1, however, the situation is entirely different; b goes to zero, indicating that additional damping is 

0.2 : 1' 
I \ \  . . ,  
, . <  . . .  . . .  
. . .  

. .  

. .  0 .o 
I I , I I I I I I I i l ~ ~ ~ l ~ l l I I  

0.0 0.2 0.4 0.6 0.8 1 .o 
X 

Figure 1 .  Steady state velocity vectors for 40 x 40 driven cavity problem 
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Table I. Performance data for 10 x 10 driven cavity with Re = 400 

Best empirical values 
Compromise 

a =  1, B = O . S  
Conventional 
a = U ,  b = O  

At a B Iter. a 

1010 
25 

5 
1 
0.5 
0.1 
0.05 

0.25 0.4 64 1 
0.25 0.3 569 
0.5 0.3 1233 
0.5 0.8 1721 
0.5 b = O  1913 
1.25 b = O  3765 
1.75 b = O  5098 

~ 

1 .oo 
1 .oo 
1 .oo 
1.01 
1.03 
1.51 
2.47 

b Iter. 

0.0329 72 1 
0.0308 679 

0.0 21 16 
0.0 2252 
0.0 4244 
0.0 6317 

0.0227 1477 

a Iter. 

1 .oo 1397 
1,oo 1138 
1 .oo 1760 
1 .oo 2109 
1.00 2254 
1 .oo 6187 
1.00 17208 

Speed-up 
factor 

1.9 
1-7 
1.2 
1.0 
1 -0 
1.5 
2.7 

Table 11. Performance data for 40 x 40 driven cavity with Re = 400 
~ 

Compromise Conventional 
Best empirical values a = 1.25, B = 0.5 a = 1.25U, b = 0 

Speed-up 
At a B Iter. a b Iter. a Iter. factor 

10" 0.25 0.3 6171 1.25 0.0063 6647 125 6665 1 .o 
25 0.25 0.4 4696 1.25 0.0043 5162 125 5117 1 .o 

5 0.5 0.8 9143 1.25 0.0 9685 1.25 9685 1 .o 
1 0.5 b = O  13563 1.26 0.0 13687 1.25 13725 1 .o 
0.5 0.5 b = O  15412 1.28 0.0 15522 1.25 15580 1 .o 
0.1 1.25 b = 0 23273 1.89 0.0 23273 1-25 33635 1.5 
0.05 1.75 b = 0 29275 3.09 0.0 30873 1.25 76495 2.5 
0.02 1.25 b = 0 46931 7.15 0.0 4693 1 1.25 240752 5.0 
0.01 0.75 b = 0 68769 14.13 0.0 78792 1.25 543425 7.0 

no longer beneficial, while our new values of a become substantially larger than conventional values. 
These larger values of a produce significant speed-up factors, approaching a value of three for small 
At. 

The 40 x 40 case summarized in Table I1 exhibits generally similar behaviour, except that we now 
obtain no appreciable benefits from b even for large At. A similar reduction in the benefits of damping 
on finer grids was previously observed by Ramshaw and Mousseau" in the analogous scheme for 
steady state calculations. Here, however, we obtain even greater benefits from the larger values of a for 
small At, where speed-up factors as large as seven are obtained. 
Our second test problem is a simulation of flow past a rectangular obstacle. The computational 

region is a rectangle of length L, = 2 and width Ly = 1, subdivided by a uniform 40 x 20 
computational mesh with Ax = Ay = 0.05. The flow enters the region through the left boundary, flows 
past the obstacle and exits through the right boundary. The top and bottom boundaries are solid walls at 
which free slip boundary conditions are imposed on the velocity. The obstacle has a length of 0.2 in the 
streamwise direction and a width of 0.3 in the transverse direction and is placed symmetrically between 
the top and bottom boundaries, with the left edge of the obstacle located at x = 0.25. No-slip velocity 
boundary conditions are imposed on the obstacle surface. The inlet flow is uniform with a streamwise 
velocity u = 0.027 and a transverse velocity u = 0, which values were also used as initial conditions at 
t = 0. The Reynolds number based on inlet velocity and obstacle width is Re = 50, which is low 
enough that vortex shedding does not occur and true steady solutions can be obtained. At the outflow 
boundary the pressure is set to zero and the streamwise gradients of u and u are also required to vanish. 
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Figure 2. Steady state velocity vectors for 40 x 20 obstacle problem 

Table 111. Performance data for 40 x 20 obstacle problem with Re = 50 

At 

10'0 
150 
50 
25 
10 
5 
1 
0.5 

Compromise Conventional 
Best empirical values a = 2.5, /3 = 0.5 a = 2.5U, b = 0 

a B Iter. 

0.25 
1 .o 
1 .o 
1.25 
2.0 
4.25 
5.0 
3.75 

0.2 
b = O  
b = O  
b = O  
b = O  
b = O  
b = O  
b = O  

1465 
1347 
2872 
3971 
5755 
8598 

23792 
33931 

a 

0.12 
0.12 
0.12 
0.12 
0.12 
0.14 
0.38 
0.72 

b 

0.0005 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

Iter. 

2460 
1927 
3338 
4550 
6374 

11236 
39349 
42326 

a Iter. 
Speed-up 

factor 

0.12 2457 
0.12 1927 
0.12 3339 
0.12 4550 
0.12 6408 
0.12 14790 
0.12 141098 
0.12 301492 

1 .o 
I .o 
1 .o 
1 .o 
1 .o 
1.3 
3.6 
7.1 

Unsteady calculations are run out to a time t = 150, where the solution has become nearly steady, 
while true steady solutions are computed by setting At to a very large value. Calculations were 
performed using various different values of At. The resulting steady state velocity vectors are plotted in 
Figure 2, which shows that a recirculation region has formed behind the obstacle. 

The performance data for this test problem are shown in Table 111. In this problem the compromise 
values of b resulted in no speed-up relative to the conventional value b = 0. (Indeed, the best value for 
b was non-zero only in the steady state case.) However, the use of larger values of a for smaller At 
again produced very significant speed-up factors, becoming larger than seven for the smallest time step 
considered (At = 0-5). 

5 .  CONCLUDING REMARKS 

We have presented a new artificial compressibility iteration scheme for solving the coupled non-linear 
algebraic equations resulting from implicit time discretizations of the unsteady incompressible Navier- 
Stokes equations. We have found that the rate of convergence may be significantly accelerated, relative 
to conventional schemes of this type, by a suitable choice of the parameters a and b. For large At the 
fastest convergence is obtained by using conventional values of a (a - lul) in conjunction with 
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relatively large values of the new parameter b. In contrast, the fastest convergence for small At is 
obtained by setting b = 0 and letting a be much larger than conventional values. This somewhat 
counter-intuitive behaviour has been interpreted in terms of the wave propagation and damping 
characteristics of the scheme. A heuristic Fourier convergence rate analysis has been used to propose 
simple analytical expressions for a and b, which provide reasonable estimates of their optimal values as 
functions of At. The use of these expressions removes or greatly reduces the need to determine optimal 
values of a and b through a tedious trial-and-error process, which would otherwise be necessary. 

It seems likely that modest fiuther improvements in convergence rate might be obtained by 
additional refinements of the method, particularly in more complicated problems involving non- 
uniform meshes with large variations in cell size. In such problems it may be advantageous to allow 
different values of a, b and AT in different cells of the mesh. It would also be of interest to perform 
numerical experiments with the method using unstructured meshes, finite element methods and 
spectral methods. 

The present scheme preserves the simplicity and clear physical interpretation of earlier artificial 
compressibility methods and these attributes are its main advantage. However, one pays a price for this 
simplicity in terms of computational efficiency: even with its accelerated convergence, the present 
scheme is considerably less efficient than more sophisticated schemes. The development of such 
schemes has received much attention during recent years and substantial progress has been made. We 
mention in particular an evolving family of inexact Newton-Krylov schemes which is producing 
excellent results in a variety of fluid dynamics and plasma physics  application^.'^-^^ These schemes are 
achieving impressive levels of performance but are considerably more complex and less hendly than 
simple schemes of the present type. Thus the present scheme is not intended to compete with these 
more sophisticated schemes in terms of computational efficiency. Its role is rather to provide an 
admittedly less efficient but much simpler alternative scheme which is much quicker and easier to 
implement and modify. The present scheme may therefore be suitable for practical applications in 
situations where simplicity, friendliness and development time take priority over execution time. We 
are also hopeful that the simplicity and clear physical interpretation of the method will make it useful 
for educational purposes. 
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